Improved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis

نویسندگان

  • Youpeng Zhang
  • Ting Zhang
  • Jie Teng
  • Hongsheng Su
چکیده

Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In order to alleviate the mode mixing problem and choose useful IMFs, a method called EEMD and distributing fitting testing is proposed in this paper, and it is used in rolling bearing fault diagnosis. Firstly, using it for rolling bearing fault diagnosis, the fault signal is decomposed by EEMD. Then applying distributing fitting testing to choose components with truly physical meaning and the de-noised signal can be obtained. Finally, utilizing envelope spectrum to distinguish different faults. The results demonstrate the proposed method can sift useful IMFs and diagnose faults effectively, such as inner race fault, outer race fault. The advantage of the proposed method is suitable for rolling bearing diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition

A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the pre...

متن کامل

Multifault Diagnosis for Rolling Element Bearings Based on Intrinsic Mode Permutation Entropy and Ensemble Optimal Extreme Learning Machine

This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learn...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013